Besetzung durch V⁴⁺ geeignete Umgebung besitzt. Darriet, Galy & Hagenmuller (1971) stellten fest, daß im $M_x V_{2-x} Mo_x O_5$ das V-Atom in einer bestimmten Atomlage nicht durch Mo6+ ersetzt wird; Galy, Darriet, Casalot & Goodenough (1970) sowie Darriet (1971) folgerten hieraus, daß die betreffende V-Lage, die etwa unserer V(4)-Lage entspricht, von V^{4+} bevorzugt wird. Goodenough (1970) zog mit Hilfe einer feinen bindungstheoretischen Überlegung den gleichen Schluß aus den von Wadsley (1955) angegebenen V-O-Abständen des Na_xV₂O₅. Diese V-O-Abstände lassen sich nach Goodenough (1970) in drei Klassen unterteilen und gelten als sichere Merkmale der Bindungsmultiplizitäten: $V \equiv O \leq 1,58$, $V = O \simeq 1,80$ und V = O \geq 1,89 Å. So läßt sich anhand der V–O-Abstände feststellen, an wieviel π -Bindungen das betreffende V-Atom beteiligt ist. Ein V-Atom mit zwei π -Bindungen kann noch ein Elektron in seinem 3d-Orbital unterbringen und ist somit vierwertig, während diejenigen V-Atome, die jeweils an drei π -Bindungen beteiligt sind, leere 3d-Orbitale besitzen und daher fünfwertig sein müssen. Analysiert man in Anlehnung an Goodenough (1970) die in Tabelle 2 aufgeführten Abstände, so kann man schließen, daß die weiteren vierwertigen V-Atome die V(3)- und/oder die V(4)-Lage bevorzugen werden.

Wir danken Herrn Y. Uchida für wertvolle Diskussionen.

Literatur

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Bericht ORNL-TM-306. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- DARRIET, J. (1971). Dissertation, Univ. Bordeaux I.
- DARRIET, J., GALY, J. & HAGENMULLER, P. (1971). J. Solid State Chem. 3, 596-613.
- GALY, J., DARRIET, J., CASALOT, A. & GOODENOUGH, J. B. (1970). J. Solid State Chem. 1, 339-348.
- GOODENOUGH, J. B. (1970). J. Solid State Chem. 1, 349-358.
- HARDY, A., GALY, J., CASALOT, A. & POUCHARD, M. (1965). Bull. Soc. Chim. Fr. S. 1056-1062.
- JOHNSON, C. K. (1976). ORTEPII. Bericht ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- KATO, K. & TAKAYAMA-MUROMACHI, E. (1986). Naturwissenschaften, 73, 499-500.
- KATO, K. & TAKAYAMA-MUROMACHI, E. (1987). Acta Cryst. C43, 1451–1454.
- PAULING, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3. Auflage. Ithaca: Cornell Univ. Press.
- SAKURAI, T. (1967). Herausgeber. UNICSII. Universal Crystallographic Computation Program System. The Crystallographic Society of Japan, Tokyo, Japan.
- SHANNON, R. D. (1976). Acta Cryst. A 32, 751-767.
- SHANNON, R. D. & CALVO, C. (1973). Can. J. Chem. 51, 265-273.
- TAKAYAMA-MUROMACHI, E. & KATO, K. (1987). J. Solid State Chem. Im Druck.
- WADSLEY, A. D. (1955). Acta Cryst. 8, 695-701.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A 24, 212-216.

Acta Cryst. (1987). C43, 1451–1454

Die Strukturen der Lithium-Vanadiumbronzen β -Li_{1,2}V₉O₂₂ (I) und β' -Li_{1,7}V₉O₂₂ (II)

VON KATSUO KATO UND EIJI TAKAYAMA-MUROMACHI

Mukizaishitsu Kenkyusho,* 1-1 Namiki, Sakura-mura, Niihari-gun, Ibaraki-ken 305, Japan

(Eingegangen am 14. September 1986; angenommen am 13. März 1987)

Abstract. (I): $M_r = 818 \cdot 8$, monoclinic, $P2_1/m$, $a = 21 \cdot 8160$ (3), $b = 3 \cdot 6055$ (1), $c = 10 \cdot 1048$ (1) Å, $\beta = 105 \cdot 246$ (1)°, $V = 766 \cdot 86$ (4) Å³, Z = 2, $D_x = 3 \cdot 546$ Mg m⁻³, $\mu = 5 \cdot 12$ mm⁻¹, $F(000) = 773 \cdot 2$, final $R = 0 \cdot 036$ for 2224 unique observed reflections. (II): $M_r = 822 \cdot 3$, monoclinic, $P2_1/m$, $a = 21 \cdot 6061$ (4), $b = 3 \cdot 6186$ (2), $c = 10 \cdot 1201$ (2) Å, $\beta = 102 \cdot 671$ (2)°, $V = 771 \cdot 95$ (4) Å³, Z = 2, $D_x = 3 \cdot 538$ Mg m⁻³, $\mu = 5 \cdot 09$ mm⁻¹, $F(000) = 776 \cdot 2$, final $R = 0 \cdot 050$ for 2505 unique observed reflections. (I) + (II): T = 298 K, Cu $K\alpha_{1,2}$, $\lambda = 1 \cdot 540562$, $1 \cdot 544390$ Å for lattice parameters, Mo $K\overline{\alpha}$, $\lambda = 0 \cdot 71073$ Å for intensity measurements. The VO₅ pyramids and the VO₆

0108-2701/87/081451-04\$01.50

octahedra are joined by edge sharing to form a layer parallel to (100) of composition V_3O_8 . The unit cell contains three layers of which two are connected through two common VO_6 corners and form a double layer. The single and the double layers alternate, being connected to each other through a common O atom. The Li ions are accommodated within two kinds of tunnels between the layers. Some Li ions in (II) probably have no fixed positions and are movable within the tunnel.

Einleitung. Von den strukturell homologen Vanadiumbronzen $\operatorname{Li}_{x} V_{6n} O_{15n-m}$ $(m \le n)$ (Kato & Takayama-Muromachi, 1986; Takayama-Muromachi & Kato, 1987) sind bisher die Strukturen des β - und des

© 1987 International Union of Crystallography

^{*} Staaltliches Institut für Anorganische Materialforschung.

 β' -Li_xV₂O₅ (Hardy, Galy, Casalot & Pouchard, 1965; Galy, Darriet, Casalot & Goodenough, 1970; Darriet, 1971) sowie die des β - und des β' -Li_xV₁₂O₂₉ (Kato & Takayama-Muromachi, 1987) eingehend untersucht worden. Von einem weiteren Vertreter dieser Reihe, Li_xV₉O₂₂, liegt eine provisorische Strukturbestimmung der β' -Phase vor, die an einem sehr kleinen Kristall durchgeführt wurde (Kato & Takayama-Muromachi, 1986). Im Rahmen der vorliegenden Arbeit sollten die Strukturen der beiden Li_xV₉O₂₂-Phasen bestimmt und verfeinert werden.

Experimentelles. Die Züchtung der Einkristalle erfolgte bei 948 K aus der Dampfphase in einer Quarzampulle, als Transportmittel diente HCl von *ca* 0,1 MPa Druck. Das Ausgangsmaterial war das Pulver der betreffenden Substanz, das vorher bei 923 K aus V_2O_4 , V_2O_5 und Li V_2O_5 in einer evakuierten Quarzampulle hergestellt worden war. Die Präparate für die röntgenographischen Untersuchungen wurden von längeren, parallel [010] nadelförmig gewachsenen Kristallen geschnitten. Im folgenden beziehen sich die in eckigen Klammern eingeschlossenen Angaben auf die β' -Phase.

Abmessungen des Kristalls für Intensitätsmes $0.024 \times 0.230 \times 0.028$ mm $[0,016 \times 0,250 \times$ sung 0.058 mm]. Gitterparameter aus 2 θ -Werten (2 θ >90°) von 90 [89] h0l- und 14 [23] hk0-Reflexen gemessen auf den Rückstrahl-Weissenberg-Aufnahmen mit Filmradius 57,3 mm. Intensitäten von 7610 [7633] Reflexen mit $-35 \le h \le 35$ [$-34 \le h \le 34$], $0 \le k \le 5$, $-16 \le l \le 16$ und bis zu $(\sin\theta)/\lambda = 0.807 \text{ Å}^{-1}$ gemessen auf dem Einkristalldiffraktometer AFC-3 der Fa. Rigaku, ω -Abtastung für $2\theta < 30^{\circ}$, $\omega/2\theta$ -Abtastung für $2\theta \ge 30^{\circ}$, Abtastbreite und -geschwindigkeit $1.2^{\circ} + 0.5^{\circ} \tan\theta$ $[1.6^{\circ} + 0.5^{\circ} \tan\theta]$ bzw. 2° min⁻¹ für ω -Kreis. Drei Standardreflexe gemessen 157 mal [161 mal] während der Intensitätsmessung, Standardabweichungen ihrer F-Werte 0,42-0,43% [0,74-0,93%]. 3903 [4395] Reflexe mit $I > \sigma(I)$ beobachtet, 2224 [2505] symmetrisch unabhängige Reflexe, $R_{int} = bezüglich F 0,022 [0,023]$ nach Anwendung rechnerischer Absorptionskorrektur, Korrekturfaktor für F 1,059–1,077 [1,042–1,165]. Struktur gelöst mit Hilfe der Pattersonfunktion, Li-Ionen lokalisiert durch Differenz-Fouriersynthese. Verfeinerung nach der Methode der kleinsten Quadrate bezüglich F gewichtet nach $\sigma(F)$. Atomformfaktoren nach Cromer & Mann (1968), Dispersionskorrekturen nach Cromer & Liberman (1970), anisotrope Temperaturfaktoren* für V- und O-Atome. Extinktions-

korrektur nach Zachariasen (1967, 1968) unter Verwendung einer vereinfachten Formel

$$F_c = sF[1 + (g\overline{T}/\sin 2\theta)(1 + \cos^4 2\theta \cos^2 2\theta_M) \times (1 + \cos^2 2\theta \cos^2 2\theta_M)^{-1}F^2]^{-1/4},$$

der Glanzwinkel des Graphit-Monochromators $2\theta_M$ s = 0.7828 (10) $= 12,17^{\circ},$ Skalierungsfaktor [1,0500 (16)], freier Koeffizient g = 1,33 (10) $\times 10^{-5} \text{ mm}^{-1}$ [2,45 (12) $\times 10^{-5} \text{ mm}^{-1}$], mit der Absorption gewichteter mittlerer Strahlengang im Kristall $\bar{T} = 0.022 - 0.029 \text{ mm}$ [0.016-0.059 mm]; Korrekturfaktor ≥ 0.968 [0.904]. Max. Δ/σ im letzten Zyklus 0,0008 [0,0002], R = 0,036 [0,050], wR = 0,026[0,035]. $w = 1/\sigma^2(F)$, S = 1,51 [1,98], $\Delta o =$ -1,04-1,11 e Å⁻³ [-1,49-1,65 e Å⁻³].

Benutzte Rechenprogramme: RSLC3 des UNICSII-Systems (Sakurai, 1967) zur Bestimmung der Gitterparameter, ORFFE (Busing, Martin & Levy, 1964) für die Berechnung der Abstände, ORTEPII (Johnson, 1976) zur Anfertigung der Strukturbilder, und eigene unveröffentlichte Programme.

Diskussion. Die verfeinerten Lageparameter sind in Tabelle 1 zusammengestellt. Fig. 1 zeigt die Projektion β -Li_{1.2}V₉O₂₂-Struktur parallel [010]. Die der Atomabstände sind in Tabelle 2 aufgeführt. Ebenso wie bei den anderen Vertretern der Li_xV_{6n}O_{15n-m}-Reihe gefunden ist das V₉O₂₂-Gerüst aus Schichten aufgebaut, die für sich isoliert die Zusammensetzung V₃O₈ besitzen. In ihm gibt es allerdings zwei Arten symmetrisch unabhängiger Schichten. Während die eine Schicht beidseitig jeweils über ein einziges gemeinsames O-Atom mit den Nachbarschichten verbunden ist, weist die andere Schicht auf einer Seite Verknüpfung durch ein O-Atom, auf der anderen Seite durch zwei O-Atome auf. Werden zwei benachbarte Schichten der letzteren Art als eine Doppelschicht betrachtet, so läßt sich das V_oO₂₂-Gerüst als eine alternierende Folge der Einzelund der Doppelschichten auffassen. Das V₁₂O₂₉-Gerüst besteht aus diesen Doppelschichten allein, während im β - bzw. β' - $M_xV_2O_5$ ausschließlich die Einzelschichten auftreten. Eine beidseitig durch zwei O-Atome mit den Nachbarschichten verknüpfte Schicht ist zwar denkbar, jedoch ist bisher kein Vertreter gefunden worden, in dem dieser Verknüpfungstyp vorkommt.

Die Li-Ionen sind in den Kanälen eingelagert, die sich zwischen den ebengenannten Schichten bilden. Fig. 2 zeigt die Koordination der Li-Lagen im β -Li_{1,2}V₉O₂₂. Die Positionen der Li(1)- und der Li(2)-Lage sind jeweils von fünf O-Atomen pyramidal umgeben (Fig. 2a). Die scheinbare, große thermische Schwingung dieser O-Atome deutet, ebenso wie bei β -Li_{1,5}V₁₂O₂₉, darauf hin, daß diese O-Atome fehlgeordnet sind. Sie sind in Wirklichkeit näher in Richtung zu den zentralen Li-Ionen verschoben, so daß die betreffenden Li– O-Abstände kürzer werden als in Tabelle 2 angegeben. Diese Werte erscheinen zum Teil für ein [5]-

^{*} Die Liste der Strukturamplituden und die Tabelle der anisotropen Temperaturfaktoren sind bei der British Library Document Supply Centre (Supplementary Publication No. SUP 43879: 50 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

koordiniertes Li-Ion etwas zu lang. Die Li(3)-Lage weist eine trigonal-prismatische [6]-Koordination auf (Fig. 2c). Da von den Paaren Li(1) und Li(2) sowie Li(3) und Li(3ⁱ) wegen zu kurzer Li–Li-Abstände jeweils nur eine Lage besetzt werden kann, betragen ihre statistischen Besetzungswahrscheinlichkeiten höchstens 0,5. Die Verfeinerung ergab, daß die Li(3)-Lage bis zu etwa 60%, aber die beiden anderen Li-Lagen bis zu 90% beansprucht werden. Die Li(1)und die Li(2)-Lage sind wahrscheinlich alternierend besetzt (Fig. 2b).

Bei dem β' -Li_{1.7}V₉O₂₂ ließ sich nur das Li(3)-Ion einigermaßen mit Sicherheit lokalisieren. Im Gegensatz zu der entsprechenden Li-Lage der β -Phase ist diese Li(3)-Lage bis zur Sättigung besetzt. In Tabelle 3 sind die Koordinaten der kleinen Elektronendichte-Maxima $(1,0-1,4 \text{ e } \text{Å}^{-3})$ aufgeführt, die bei der Differenz-Fouriersynthese innerhalb der Kanäle auftraten, in denen beim β -Li₁, V₉O₂₂ das Li(1)- und das Li(2)-Ion eingelagert sind. M(1) entspricht der von Galy, Darriet, Casalot & Goodenough (1970) sowie Darriet (1971) vorgeschlagenen Li-Lage im β' -Li_xV₂O₅ und M(2) der Li(2)-Lage im β -Li_{1,2}V₉O₂₂; M(3) und M(4) befinden sich neben M(1) bzw. M(2). Die M(3)- und M(4)-Lagen weisen zwar eine für ein isoliertes Li-Ion nicht passende, stark unsymmetrische Koordination auf, könnten jedoch von einem Paar der Li-Ionen besetzt werden, die Abstoßung zwischen den Li-Ionen [Abstand 3.3 (1) Å] würde die unsymmetrische Koordination ausgleichen. Da ein Kanal 1,2 Li-Ionen enthält, kommt es notwendigerweise vor, daß innerhalb einer Translationsperiode eines Kanals zwei Li-Ionen eingelagert werden. Gegen den Vorschlag, diesen Maxima die noch nicht lokalisierten Li-Ionen statistisch zuzuordnen, sprechen jedoch folgende zwei Tatsachen: Zum einen ist der Grund unklar, warum ein Maximum fehlt, das der Li(1)-Lage der β -Phase entspricht; zum anderen war beim β' -Li_{2.1}V₁₂O₂₉ (Kato & Takayama-Muromachi, 1987) nur ein Maximum erkennbar, das dem vorliegenden M(1) entsprach. Im Gegensatz zur β -Phase sind die O-Atome, die die Kanäle umschließen, nicht fehlgeordnet, was die unterschiedliche Kationenverteilung in den Kanälen widerspiegelt.

Im $Li_x V_9 O_{22}$ befinden sich 1 + x V-Atome im vierwertigen Zustand. Nach der Paulingschen elektrostatischen Valenzregel (Pauling, 1960) erscheint es wahrscheinlich, daß die V(5)-Lage von V⁴⁺ besetzt wird. Betrachtet man in Anlehnung an Goodenough (1970) die in Tabelle 2 aufgeführten Abstände analytisch, so kann man schließen, daß die V-Atome V(7), V(8) und V(9) fünfwertig sein müssen. Alle anderen V-Lagen können dagegen eventuell ein V⁴⁺ aufnehmen. Die parallel [010] laufende Doppelkette der durch gemeinsame Kanten verknüpften VO₅-Pyramiden stellt ein Bauelement dar, das in Metavanadaten wie KV5+O3.H2O (Christ, Clark & Evans, 1954), NaV⁵⁺O₃,2H₂O (Björnberg & Hedman,

1977) oder β -NaV⁵⁺O₃ (Kato & Takayama, 1984) vorkommt. Dies legt ebenfalls die Fünfwertigkeit der ebengenannten drei V-Atome nahe.

Tabelle 1. Lageparameter für β -Li_{1,2}V₀O₂₂ und β' -Li_{1,7}V₉O₂₂ mit Standardabweichungen in Klammern

Alle Atome besetzen die speziellen Punktlagen 2(*e*) $x, \frac{1}{4}, z$ und $\overline{x}, \frac{3}{4}, \overline{z}$ der Raumgruppe $P2_1/m$.

$\boldsymbol{B}_{\mathrm{iiq}} = \frac{1}{3} \boldsymbol{\angle}_{i} \boldsymbol{\angle}_{j} \boldsymbol{\beta}_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$						
	x	z	$B/B_{\rm äq}({\rm \AA}^2)$			
-Li _{1,2} V ₉ O ₂₂						
(1)	0,91260 (4)	0,14108 (10)	0,545 (15)			
(2)	0,06130 (4)	0,09135 (10)	0,481 (14)			
(4)	0,42741 (4)	0,77491 (9)	0,496 (13)			
(5)	0,59357 (4)	0,98644 (9)	0,375 (14)			
(6)	0,74941 (4)	0,94565 (10)	0,545 (14)			
(7) (9)	0,02763 (4)	0,40850 (10)	0,536 (15)			
(6) 7(9)	0.63435(4)	0,50871 (9)	0,562 (14)			
$\tilde{0}(1)$	0,01066 (17)	0,2233 (4)	0,62 (6)			
0(2)	0,90425 (18)	0,2934 (4)	0,94 (7)			
D (3)	0,82772 (19)	0,0367 (5)	0,88 (5)			
D(4)	0,95523 (19)	0,9534 (4)	1,02 (7)			
)(5))(6)	0.12935 (18)	0,1966 (4)	2,27 (11)			
0(7)	0,33332 (16)	0,6967 (4)	0,61 (6)			
0(8)	0,21542 (18)	0,7276 (4)	2,69 (12)			
D(9)	0,26530 (16)	0,0119 (4)	0,58 (5)			
P(10)	0,39054 (16)	0,9658 (4)	0,73 (6)			
D(12)	0.43844 (18)	0.6243 (4)	1,15(7)			
0(13)	0,64412 (16)	0,8577 (4)	0,59 (5)			
0(14)	0,75179 (19)	0,7875 (4)	1,03 (6)			
D(15)	0,57354 (16)	0,1700 (4)	0,61 (6)			
(10)	0,098/3(19)	0,1251(4) 0,5746(4)	1,09 (6)			
D(18)	0,10276 (18)	0,4590 (4)	1.82 (9)			
0(19)	0,34323 (18)	0,3431 (4)	0,76 (6)			
0(20)	0,23704 (19)	0,4635 (5)	2,13 (10)			
D(21)	0,66549 (19)	0,5051 (4)	0,93 (6)			
j(22) j(1)*	0,55936 (19)	0,0181 (4)	1,05 (8)			
.i(2)*	0,8427 (14)	0,401 (3)	2,6 (7)			
.i(3)*	0,4966 (28)	0,460 (6)	5,3 (15)			
"-Li _{1.7} V ₉ O ₂₂						
(1)	0,90938 (6)	0,14065 (12)	0,646 (21)			
(2)	0,05869 (6)	0,08610(13)	0,574 (19)			
(3)	0,280/5 (0)	0,85241 (11)	0,448(17) 0.467(17)			
(5)	0,59365 (6)	0,97900 (11)	0,407 (17)			
(6)	0,75038 (6)	0,93165 (12)	0,502 (18)			
/(7)	0,02556 (7)	0,40364 (12)	0,726 (21)			
(8)	0,31281 (6)	0,52634 (12)	0,563 (18)			
(9)	0.00655 (24)	0.2214 (5)	0,501 (18)			
0(2)	0,89566 (26)	0,2902 (5)	1,22 (10)			
D(3)	0,82611 (28)	0,0270 (6)	0,79 (7)			
D(4)	0,95694 (25)	0,9574 (5)	0,83 (9)			
2(5) 2(6)	0,08280 (25)	0,9056 (5)	0,77(8)			
D(7)	0.33460 (23)	0.7128 (5)	0.53 (7)			
D(8)	0,21797 (25)	0,7555 (5)	1,17 (9)			
D(9)	0,26632 (22)	0,0328 (4)	0,43 (7)			
D(10)	0,39101 (23)	0,9761 (5)	0,59 (7)			
y(11)	0,52183 (24)	0,8814 (5)	0,70(7)			
D(12)	0.64451 (25)	0.8449 (5)	0.62 (8)			
D(14)	0,75757 (27)	0,7748 (5)	1,14 (9)			
0(15)	0,57267 (23)	0,1632 (5)	0,55 (8)			
D(16)	0,69664 (24)	0,1040 (5)	0,64 (8)			
(17)	0,99070(27) 0.10060(29)	0,3704 (0)	1,03 (9)			
D(19)	0,34089 (26)	0,3547 (5)	0.92 (9)			
D(20)	0,23669 (26)	0,4904 (6)	1,56 (10)			
0(21)	0,66618 (26)	0,4912 (5)	0,79 (8)			
D(22)	0,56079 (28)	0,6118 (5)	1,66 (11)			
	0,4903 (28)	U,4 /U (5)	5.7(12)			

* Besetzungswahrscheinlichkeiten: Li(1) 0,45 (3); Li(2) 0,43 (3); Li(3) 0,32.

† Besetzungswahrscheinlichkeit: Li(3) 0,5.

Wir danken Herrn Y. Uchida und Herrn Dr Y. Onoda für wertvolle Diskussionen.

Tabelle 2. Interatomare Abstände (Å) mit Standardabweichungen in Klammern

Symmetrieoperationen:						
(i) $1-x, 1-y, 1-z$	(ii) $1 - x, -y, 1 - z$					
(iii) $1 + x, y, z$	(iv) x, y, $-1 + z$					
(y) - 1 + x + y - 1 + z	(vi) r v 1 + z					
$(v_1) = (v_2, y_1) = (v_1 + y_2) = (v_1) = ($	$(v_1) x, y, 1+2$					
$(v_{11}) 1 - x, 1 - y, 2 - 2$	(VIII) 1 – x , – y , 2 – 2					
(1x) - 1 + x, y, z						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} \beta'-\text{Li}_{1,2} & \beta'-\text{Li}_{1,7} \\ & \text{V}_9\text{O}_{22} & \text{V}_9\text{O}_{22} \\ \hline & \text{V(6)-O(14)} & 1,613 (4) & 1,628 (5) \\ & \text{O(3'')} & 1,714 (4) & 1,708 (6) \\ & \text{O(9'')} & 1,8998 (11) 1,8948 (14) \\ & \text{O(9'')} & 1,8998 (11) 1,8948 (14) \\ & \text{O(13)} & 2,235 (4) & 2,263 (5) \\ & \text{O(16'')} & 2,359 (4) & 2,298 (5) \\ & \text{V(7)-O(18)} & 1,584 (4) & 1,583 (6) \\ & \text{O(11)} & 1,8884 (12) 1,8947 (16) \\ & \text{O(17'')} & 1,8884 (12) 1,10 1,8833 (15) \\ & \text{O(21'')} & 1,8811 (11) 1,8833 (15) \\ & \text{O(21'')} & 1,8811 (11) 1,8833 (15) \\ & \text{O(21'')} & 1,8811 (11) 1,8833 (15) \\ & \text{O(13)} & 1,785 (4) & 1,784 (5) \\ & \text{O(13)} & 1,7852 (12) 1,9032 (17) \\ & \text{O(21)} & 2,021 (4) & 2,016 (5) \\ \end{array}$					
$\begin{array}{c} O(10^{0m}) 1,8748 (10) 1,8772 (13)\\ O(13) 1,914 (4) 1,925 (5)\\ O(15^{0m}) 2,015 (4) 2,013 (5)\\ O(16^{0m}) 2,353 (4) 2,306 (5)\\ \hline Li(1)-O(14) 1,95 (3)\\ O(6^{0m}) 2,32 (2)\\ O(6^{0m}) 2,32 (2)\\ O(20^{0m}) 2,43 (2)\\ O(20^{0m}) 2,43 (2)\\ O(20^{0m}) 2,43 (2)\\ O(18^{0m}) 3,14 (2)\\ Li(2)-O(2) 1,93 (3)\\ O(8^{0m}) 2,38 (2)\\ O(18^{0m}) 2,41 (2)\\ O(18^{0m}) 2,41 (2)\\ O(18^{0m}) 2,41 (2)\\ O(20^{0m}) 3,07 (2)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Fig. 1. Projektion der β -Li_{1.2}V₉O₂₂-Struktur parallel [010].

Fig. 2. Koordination der Li-Lagen im β -Li₁₂V₉O₂₂. Die Kugeln in den Li-Lagen stellen Atome mit $B = 0.5 \text{ Å}^2$ dar. Von den beiden Li-Lagen in (a) bzw. (c) kann jeweils nur eine besetzt werden (s. Text).

Tabelle 3. Die in der Differenz-Fouriersynthese erschienenen Elektronendichte-Maxima des β' -Li, - $V_{9}O_{22}$ (s. Text)

Geschätzte Fehlergrenzen sind x 0,002, y 0,04 und z 0,004.

	Lage	x	У	Ζ
M(1)	2(e)	0,794	3	0,713
M(2)	2(e)	0,826	į	0,403
M(3)	4(1)	0,819	0,50	0,672
<i>M</i> (4)	40	0,833	0,00	0,411

Literatur

- BJÖRNBERG, A. & HEDMAN, B. (1977). Acta Chem. Scand. Ser. A, 31, 579-584.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Bericht ORNL-TM-306. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- CHRIST, C. L., CLARK, J. R. & EVANS, H. T. JR (1954). Acta Cryst. 7, 801-807.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- DARRIET, J. (1971). Dissertation, Univ. Bordeaux I.
- GALY, J., DARRIET, J., CASALOT, A. & GOODENOUGH, J. B. (1970). J. Solid State Chem. 1, 339-348.
- GOODENOUGH, J. B. (1970). J. Solid State Chem. 1, 349-358.
- HARDY, A., GALY, J., CASALOT, A. & POUCHARD, M. (1965). Bull. Soc. Chim. Fr. S. 1056-1062.
- JOHNSON, C. K. (1976). ORTEPII. Bericht ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- КАТО, К. & ТАКАЧАМА, Е. (1984). Acta Cryst. B40, 102-105.
- KATO, K. & TAKAYAMA-MUROMACHI, E. (1986). Naturwissenschaften, 73, 499-500.
- KATO, K. & TAKAYAMA-MUROMACHI, E. (1987). Acta Cryst. C43, 1447-1451.
- PAULING, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals. 3. Auflage. Ithaca: Cornell Univ. Press.
- SAKURAI, T. (1967). Herausgeber. UNICSII. Universal Crystallographic Computation Program System. The Crystallographic Society of Japan, Tokyo, Japan.
- TAKAYAMA-MUROMACHI, E. & KATO, K. (1987). J. Solid State Chem. Im Druck.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A24, 212-216.